

Sustainability in commercial laundering processes

Module 5 **Energy in laundries**

Chapter 3

Energy saving possibilities - overview

Content

- Introduction
- Influence parameters on energy consumption
- Energy consumption determining properties
- Measures for energy saving
 - Definitions, sequence
 - Organizatorial
 - Technical
 - Technological

Learning targets

After finishing this chapter, you will

- Know the technical processes in laundry
- Know, where within processes energy saving potentials are
- Be able to name energy saving measures and know how to apply in practice
- Be able to differentiate between organizatorial, technical and technological measures and be able to choose the best (economical) sequence for application in practice
- Know how to adopt factors temperature, mechanics, chemistry at their best

Introduction

- Energy costs in laundry share in total costs about 10%
- Main part is to generate heating energy
- Thus, effective application of heating energy is particularly important
- Following laundry processes need heating energy
 - Washing
 - Drying
 - Mangling
 - Ironing/Pressing/Finishing

Influence parameters on energy consumption

- Kind and composition of laundry determines water and energy consumption
- Example for composition of hospital laundry
 - ca. 70 80 % for mangling
 - ca. 12 –20 % for drying (e.g. terry cloth)
 - ca. 8 –12 % flat work

Measures for energy saving

- definitions

Organizatorial measures

how to carry out order processing and work processes, respectively

Technical measures

measures that influence technical processes which are at the same time measures that can be influenced in practice (e.g. washing program)

Technological measures

measures in construction of machinery, no possibility to influence in laundry practice

Measures sequence

- Measures shall be introduced according to the sequence on chart no
- measures of next level shall not be applied before measures of one level (e.g. the first level, organizatorial measures) are exhausted
- Technical and financial expenditures arise from step to step
- A new machine with technical and technological features maybe can't improve effectiveness, if there is possibility of improvement in work organization
- But if technical out-dated machinery is applied, optimization of work organization is not enough. Example:
 - Costs caused by waste heat won't be compensated by optimised work organisation

- organizatorial

- Sorting of textiles (cotton, linen, coloureds, wool) and
- Intelligent combination of washing programmes
 - ⇒ Temperatures/energy demand for heating
 - ⇒ Time for the washing cycles
 - ⇒ Time for loading and unloading
 - ⇒ Exhaustion of machine load
 - Avoid overload (check weight), high rejects otherwise
 Consequence: new washing cycle which means a waste of money and time

Measures organizatorial

- Work processes shall be organized in a way that steam generator can deliver constantly
- Steam consumption shall be continuously all over the day
- Avoidance of "steam spikes"
 - Shifted start of machines

- technical

- Determination of technical measures means to influence the parameters of Sinner's Circle
- Factor temperature causes highest energy demand
- It can be minimised by

a) Other adjustment of Sinner factors

- Low temperature washing (more chemistry, more mechanics)
- Reduction of liquor ratio (higher mechanics)
- Optimization of washing times (prolonged time)

b) Optimisation of heat generation

Re-usage of waste heat

Measures technical

Heat flow volume Q

Heating process of washing liquor depends on the following

$$Q \sim K, m_W, T_{max}, t$$

K: heat wastages

mw : liquor volume

T_{max}: max. liquor temperature

t : washing time

Factors to be influenced to optimize washing process

Measures technical

Optimization of steam generation

By ensuring the following:

- High efficiency (constantly monitoring of CO₂ concentration)
 - Management systems (also see 6-7)
- Optimal burner-adjustment (soiled heating surfaces decrease heating efficiency)
- Thorough deaeration of heat exchangers
- Functionality check of all steam traps
- Re-usage of condensate
- Installation free from leakages
- Isolation of steam pipes (to avoid waste heat)

- technical

Application of low-pressure steam (2 to 4 bars)

- Economical more efficiently than high-pressure steam (10 to 16 bars)
- application possible for heating of water for steam for finisher process only
- BUT: Mangling and drying require high-pressure steam or gas (also see module 5-5)

- technical

Effects of heat exchangers

- Re-usage of heat flow volume Q
- Minimisation of waste heat

Heat reclaiming possible due to

- Waste water of washing process (see water recycling, module 1, module 6)
- Waste heat of drying process (also see 5-5)
- Waste heat of finishing and mangling

- technical

Re-usage of washing liquor

Saving of water <u>and</u> saving of energy Heat flow volume Q

- Nowadays common process design in tunnel washers
- Application also possible in washer extractors
 - Rinsing baths collected in tanks
 - Application of gathered rinsing liquor in next pre- or main wash
 - Pumping of liquor by exploitation of height differences into machines

- technical

Re-usage of washing liquor

- problems-
- Storage demand for tanks
- Technological complex, e.g. pumps, valves
- Isolation of tanks necessary
- Lint generation (filter systems shall avoid carry-over into next compartment)
- Particularly problematic if there will be linen/white laundry after coloureds
 - Even if filter systems are applied, this sequence shall be avoided

- technical

Lower temperature of wash liquor (Low temperature washing) (Increased mechanics and/or chemistry necessary)

- Heating energy can be saved
- Adapted detergents necessary (special ingredients such as PAP)
- Higher prices of those special detergents
- Washing efficiency as like as optimal action of chemicals may be decreased
- Application of low-temperature process shall be individually adapted for each laundry
- Comprising explanations about the low-temperature washing process see 3-4

- technical

Reduction of liquor ratio at increased mechanics

- In practice often too high liquor ratios reasons why:
 - Defective measuring and controlling devices
 - Process controlling "by hand"
 - No consideration of load
- Low liquor ratios enable energy savings without decreased washing efficiency

exceptions:

- Blended fibres
- Mechanically sensitive textiles (wool)
- Heavily soiled textiles, incontinence goods
- PES/CO blended fibres tend to crumple

- technical

Optimization of washing times

- Optimisation of time also leads to energy saving
- Processes with shorter residence times
 - Higher temperatures
 - Higher machine power/mechanical agitation
- BUT:
 - Washing efficiency may decrease

- technological

Technological measures are measures that are determined by machine construction, e.g.

Optimization of mechanics by

- Adequate dimensioning and form of paddles (also see module 2)
- Adjustment of revolutions per minute to achieve g-factors of about 0,7 g (also see module 3)
- Rotating drum revolutions instead of oscillating
- Reverse rhythms
 - Longer running times/shorter idle times (e.g. running times 12s, idle time 2s) cause more intensive mechanics than short running times/long idle times (gentle wash)
- Low liquor ratios

- technological

- One bath
 - Without pre-wash and/or wetting
- 60°C washing process
 - Alternation of thermal disinfection by chemical-thermal (also se module 3)
- Intermediate spin
 - High number of revolutions per minute between rinsing baths
 - Heating energy demand for drying will decrease
 - Demand of rinsing water will decrease
- Reduce residual moisture
 - By higher dewatering power
 - Also see chapter 4

- technological

Optimisation of energy consumption – drying

- Adapted air circulation
 - Low waste air
 - Fresh air/recycled air
 - Circulation through textiles (crosswise)
- Adapted controlling of drying time
 - Controlling by time (disadvantageous, because in practice mostly overdrying)
 - Controlling by moisture (measurements of temperature difference in waste heat)
 - IR textile- and surface temperature measurements
- Gas heating