

Sustainability in commercial laundering processes

Module 1 Usage of water

Chapter 6

Laundry waste water in the Netherlands

Learning targets

- This chapter will provide you with a survey on waste water legislation in the Netherlands
- The basic concept for the calculation of waste water load in the Netherlands is explained.
- The basic concept for the calculation of waste water costs in the Netherlands is explained
- A short overview of water consumption in Dutch Laundries is presented

Content

- Legislation in the Netherlands
- Waste water cost in the Netherlands
- Water consumption in Dutch Laundries

Waste water legislation in the Netherlands I

- Most laundry companies follow the AMvB textielreiniging
 - a universal and concise regulation containing all legislation with regard to the protection of the environment and protection of the workers in the textile care sector:
 - noise
 - · waste water and water consumption
 - · energy consumption
 - air pollution
 - safety (e.g. use of solvents)
 - soil protection

Waste water legislation in the Netherlands II

- Demands for waste water within the AMvB (implementation of directive 1991/271/EC)
 - no bad smell
 - should not damage the sewage system
 - should not interfere with the (municipal) sewage purification system and the sewage sludge processing
 - should not contain dangerous contaminants and laundry waste product if their presence in the waste water can be avoided

Waste water legislation in the Netherlands III

Practical

- for the protection of the municipal sewage system and the sewage purification system the following universal demands are applicable for waste water in the Netherlands
 - 6,5 < pH < 10
 - T < 30 °C
- depending on the type of laundry (industrial workwear, cleaning cloths) more strict demands can be imposed by the local authorities (Waterschap)

Waste water legislation in the Netherlands IV

- The temperature and pH regulations are (very) difficult to comply with for laundries
- Some companies have therefore adapted demands (in consultation with the local authorities) to avoid the application of extra cooling processes at their sites
 - T < 40 °C
 - pH < 11

Waste water legislation in the Netherlands V

- Other regulation with regard to waste water management regulations following from the AMvB are:
 - if the fresh water consumption of a company exceeds 5.000 m³ per year a company plan for reducing water consumption should be made and be available to the local authorities
 - the drain of the chemical storage room must be disconnected from the sewage system

Waste water costs in the Netherlands I

- The waste water costs are based on the COD (Chemical Oxygen Demand or CZV in Dutch) and the nitrogen content of the waste water. A number of specific contaminants (heavy metals, salts) also contribute to the waste water costs
- The costs are based on the number of the so-called contamination units or inhabitant equivalents (i.e.) and these can be measured or calculated
- The costs are based on the number of i.e.'s. The actual cost of an i.e.
 is determined by the local water authority (waterschap)

Waste water costs in the Netherlands II

Experimental determination of the number of contamination units (i.e)

$$i.e. = \frac{(COD + 4,57*N_{Kjelldahl})}{49,6}*\frac{Q}{1000}$$

- depending on:
 - COD (in mg O_2/I)
 - Nitrogen based on the Kjelldahl method (mg N/l)
 - Fresh water intake Q (in m³ / year)

Waste water costs in the Netherlands III

- Experimental determination of the number of contamination units (i.e.) of specific contaminants
 - disposal of 1 kg / year of chromium, copper, nickel, silver and zinc equals 1 i.e.
 - disposal of 100 g / year of arsenic, mercury and cadmium equals 1 i.e.
 - disposal of 650 kg / year of chloride and sulphate equals 1 i.e.
 - disposal of 20 kg / year of phosphor equals 1 i.e.

Waste water costs in the Netherlands IV

- Calculation of the number of i.e.'s
 - only allowed for laundries with less than 1000 i.e.'s
- The calculation is based on the annual intake of fresh water Q_v in m³:

$$i.e.=0,015*Q_y$$

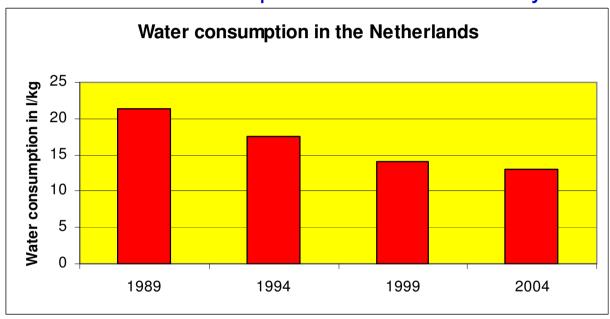
Waste water costs in the Netherlands V

- Example of the calculation method
 - laundry with a fresh water intake of 40.000 m³ per year
 - calculated number of i.e.'s:

```
i.e. = 0.015 * 40.000 = 600
```

- cost per i.e. is about € 60,00 (depending on region)
- total costs € 60 * 600 = € 36.000,- per year

Water consumption in Dutch laundries I



- In the Netherlands a mutual agreement between government and a major part of the laundry sector has been closed, the so-called MJAagreement in which the laundry sector show its commitment to minimizing the energy consumption.
- More than 60 of the (major) laundry sites participate in this agreement.
- Within this agreement the energy consumption of the participating laundries is monitored on a yearly base.
- As energy consumption in the laundry business is closely connected to water consumption, the water consumption is also monitored.
- In 2004 a mean value for the water consumption was measured of 13 l/kg textile.

Water consumption in Dutch laundries II

Development in water consumption within the last 15 years

- Main causes of the water consumption reduction:
 - more efficient washing processes
 - growing number of continuous batch washers
 - consultancy and knowledge transfer